Tuesday, August 31, 2010

Not That Kind of Chrome

The sun’s lower atmosphere is called the chromosphere, normally invisible because the photosphere is far brighter. However, during a total solar eclipse, which blots out the photosphere, the chromosphere is visible as a pinkish aura around the solar disk. The strongest emission line in the hydrogen spectrum is red, and the predominance of hydrogen in the chromosphere imparts the pink hue. The chromosphere is a storm-racked region, into which spicules, jets of expelled matter thousands of miles high, intrude.
Above the chromosphere is the transition zone. As mentioned earlier, the temperature at the surface of the photosphere is 5,780 K, much cooler than the temperatures in the solar interior, which get hotter the closer one approaches the core. Yet, in the chromosphere, transition zone, and into the corona, the temperature rises sharply the farther one goes from the surface of the sun! At about 6,000 miles (10,000 km) above the photosphere, where the transition zone becomes the corona, temperatures exceed 1,000,000 K. (For detailed real-time views of the solar photosphere, chromosphere, and corona, see http://sohowww.estec.esa.nl.) How do we explain this apparent paradox? It is believed that the interaction between the sun’s strong magnetic field and the charged particles in the corona heat it to these high temperatures.

No comments: