Sunday, February 28, 2010
The Jovian Magnetospheres
Jupiter’s magnetosphere is the most powerful in the solar system. Its extent reaches some 18,600,000 miles (30 million km) north to south. Saturn has a magnetosphere that extends about 600,000 miles (1 million km) toward the sun. The magnetospheres of Uranus and Neptune are smaller, weaker, and (strangely) offset from the gravitational center of the planets.
The rapid rate of rotation and the theorized presence of electrically conductive metallic hydrogen inside Jupiter and Saturn account for the generation of these planets’ strong magnetic fields. While Uranus and Neptune also rotate rapidly, it is less clear what internal material generates the magnetic fields surrounding these planets, since they are not thought to have metallic hydrogen in their cores. With charged particles trapped by their magnetospheres, the jovian planets experience Aurora Borealis, or “Northern Lights,” just as we do here on Earth. These “lights” occur when charged particles escape the magnetosphere and spiral along the field lines onto the planet’s poles. The Hubble Space Telescope has imaged such auroras at the poles of Jupiter and Saturn.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment